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The steady two-dimensional problem of reflexion of an oblique partly dispersed 
plane shock wave from a plane wall is studied analytically. Viscosity, diffusion 
and heat conduction are neglected. The thermodynamic state of the gas is 
assumed to be determined by the instantaneous values of the specific entropy s, 
pressure p and a finite number of internal state varia.blee. Results for the flow 
field behind the reflected shock are obtained by a perturbation method which is 
based on the assumption that the influence of relaxation is relatively weak. 

1. Introduction 
Recent studies of one-dimensional unsteady shock reflexion in a relaxing gas 

have shown that the wall pressure history is very sensitive to the relaxation 
processes that occur in the gas. Therefore, shock reflexion is a very useful research 
tool for the experimental determination of reaction rates (see, for example, 
Baganoff 1965; Johannesen, Bird & Zienkiewicz 1967; Smith 1968; Buggisch 
1970; Becker 1972). Unfortunately, this method has certain disadvantages: for 
instance, the time during which useful data may be obtained is rather short, 
namely of the order of a few ps. Hence, i t  is necessary to use very fast reacting 
instruments. This disadvantage could be avoided if, instead of the one- 
dimensional flow, one could use a suitable steady flow which is equally sensitive 
to relaxation processes. Such a flow can indeed be found, namely the two- 
dimensional steady flow of the gas through an oblique shock which is reflected 
from a plane wall. Of course, the very short time available in unsteady flow is 
now replaced by a very short distance. This being so, the steady flow will be 
preferable for an experimentalist only if high space resolution is obtainable. 
Furthemore, serious difficulties will arise from interactions between the shock 
wave and the boundary layer if the flow field is produced by the reflexion of a 
shock from a wall. Fortunately, the same flow field without a boundary layer is 
established by two oblique shocks crossing each other symmetrically. Even 
though there may be some doubt whether the steady reflexion is really useful for 
an experimentalist, we think that the problem is interesting in its own right and 
therefore should be investigated. 

As we have mentioned, the two-dimensional steady reflexion is sensitive to 
relaxation processes in a similar way to the one-dimensional unsteady reflexion. 
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FIUURE 1. Sketch of the flow field under consideration. 

This is plausible: in both cases the gas particles pass two shocks. For particles 
which are far away from the wall, in both cases there is enough time for them to 
relax to the equilibrium state before they meet the reflected shock. In contrast, 
in both cases particles near the wall pass the reflected shock before the relaxation 
processes induced by the incident shock are finished. 

In what follows, we shall present a theory of steady two-dimensional reflexion 
of a partly dispersed oblique shock wave in a relaxing gas where viscosity and 
heat conduction are neglected. To our knowledge, this problem has not yet been 
considered, 

2. Description of the flow field and basic equations 
Figme 1 shows the flow field qualitatively. A steady oblique shock of given 

inclination, which, for example, can be produced by a wedge, meets at  5 = 0 the 
solid planc wall y = 0. The gas flows from left to right. The thermodynamic state 
and the velocity t h o  to the left of the incident shock are given, the gas being in 
thermodynamic equilibrium there. A t  the wall, the component of velocity in the 
y direction must vanish. This condition can be satisfied in many cases if a 
reflected shock is introduced. Near the wall, the frozen reflected shock crosses 
the relaxation zone of the incident shock. Far away it becomes straight, the gas 
to the left of it in region 1 being in equilibrium. Of course, at the wedge the 
incident shock is also curved, but to make the theory of reflexion as simple as 
possible, we assume the wedge to be far away at y = co. In  this case, the incident 
shock is given by the straight line x = - KZJ and the state of the gas in region 1 
depends only on the distance from the incident shock. 

The flow which we study is steady. Effects of viscosity, diffusion, heat conduc- 
tion and radiation are neglected. It is assumed that body forces are unimportant. 
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Under these circumstances the balance equations for mass and momentum are 

Dp +P@Z + vy) = 0, (1) 

Du+p-lpz = 0, 

D ~ + p - l p ,  = 0 

and the integrated form of the balance of energy is 

h=*(u2+v2) = h,+*ug. (4) 

The symbols used here have the following meaning: p = mass density, p = pres- 
sure, h = specific enthalpy and (u, w) = velocity components in the (x, y) direc- 
tions. The operator D represents the material derivative. 

We are concentrating on effects of thermodynamic non-equilibrium processes 
like vibrational relaxation or chemical reactions. Therefore, we introduce a finite 
number of internal state variables p, E2, . . ., Em. These may, for example, have the 
physical meaning of vibrational temperatures in the case of vibrational relaxa- 
tion. The internal state variables enter the theory through the equation of state 

( 5 )  h = A@, S, E l ,  c2, ...,in). 
To solve our problem we must know how the change with time for given 
behaviour of the pressure p and the entropy s. In  many cases this dependence 
can be given in form of a rate equation: 

0% = Ld(p,  S, E l ,  F,  . . ., En). (6) 

In  what follows, we consider only internal processes for which (6) holds. 
Finally, thermodynamic considerations show that the equations 

* 
h P = p-l, As = T (7 )  

give the dependence of the density p and the temperature T on p ,  s and the &. 
Equations (1), (2), (3) and (6) are correct only for continuous flow fields, 

whereas (4), (5) and (7) hold even if there are discontinuities in the field. Because 
we have shocks in the flow field, we must complete (1)-(7) by jump conditions for 
the density, for the two components of momentum and for the internal variables 
e. For density and momentum we take the usual jump conditions; for the ki we 
demand simply that the be continuous across a shock. 

3. Basic assumptions for the perturbation method 
The problem does not admit exact analytical solutions. Therefore, if we do not 

want to use a computer, we must employ some perturbation method. The method 
which we shall employ was used first, we think, by Spence in 1961 in his calcula- 
tion of the development of the steady shock formed in a tube filled with relaxing 
gas into which a piston is pushed. The author himself (Buggisch 1969, 1970 ; see 
also Becker 1972) has used the same method for the problem of one-dimensional 
unsteady shock reflexion. The basic assumption is that the influence of relaxation 
on the flow field is relatively weak. To be more specific, we asaume that the 

I1 F L M  61 
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enthalpy and its first and second derivatives with respect to p ,  8 and 
(i = 1,2, . . . , n) never differ much from the equilibrium enthalpy and its deriva- 
tives. In  other words, we assume that we can split k into two parts 6 and I&, 

where w is the equilibrium enthalpy and where e > 0 is a small number which 
measures the influence of non-equilibrium processes on the flow field: 

A = X@, 8 )  +&$I, 8, ,El, ,Ez,. .., 6%). (8) 

Further, we assume that B and its first and second derivatives are, at most, of 
the order of h and its derivatives in the entire flow field. Of course, in a thermo- 
dynamic equilibrium state must vanish. 

The question arises as to whether there is any physical justification for the 
assumption that e is small. We now give some reasons why there are indeed real 
physical situations in which e is very small. First, let us consider a case where the 
gas is a mixture of two components, one of which is inert while the other has 
a finite number of relaxing internal degrees of freedom. If we choose the concen- 
tration of the relaxing component small enough, we can make e as small as we 
wish. Second, let us take a gas with vibrational relaxation and let us assume that 
the temperature in the flow field remains small in comparison with the charac- 
teristic temperature for the excitation of vibrations. In  this case the influence of 
relaxation remains very small also, i.e. e is a very small number. Finally, we 
remark that the assumption of small e is equivalent to the assumption that the 
difference between the frozen and equilibrium speed of sound is small. This 
assumption has been made in several previous papers, see, for instance, Spence 
(1961) and Ockendon & Spence (1969), and there is no doubt that useful and 
interesting results have been obtained in these papers. 

To make things clearer, let us consider as an example a model gas, namely the 
perfect gas with one internal energy mode and with constant specific heats. The 
internal state variable is, in equilibrium, equal to the (translational) temperature 
of the gas. The canonical equation of state for this gas is (see, for instance, 
Becker & Bohme 1969) 

where R, ED, E, T,, p ,  and s+ are constants, R being the gas constant, CD the 
specific heat at  constant pressure of the gas at  equilibrium, Re the specific heat at  
constant pressure of the internal energy mode and T,, ?+ and s+ the reference 
temperature, pressure and entropy respectively. Now, h can be expanded in a 
Taylor series with respect to e. If the specific heat of the internal energy mode is 
small, i.e. if e < 1, we can approximate this Taylor series by its first two terms: 

(10) 
---- 

h(P2 8) @Pi %5) 
Equation (10) is of the same form as (8); thus we can apply the perturbation 
method, which we shall explain in $4, to our model gas for E < 1. 
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4. Development of the perturbation method and results for the general 
case 

The perturbation method gives the solution in the form of a power series in E .  

In  the zero-order approximation the relaxation has no influence on the flow field. 
Thus, the velocities, the thermodynamic variables and the inclination of the 
reflected shock can be calculated from the shock relations and the thermo- 
dynamic properties of the gas at  equilibrium. Therefore, we can consider these 
zero-order quantities to be known. (We remark here that we assume the situation 
to be such that regular reflexion, no Mach reflexion, occurs.) We denote the zero- 
order solution for the pressure by p,. The subscript k refers to the region of the 
flow field, k = 1 indicating that part of the field which lies between the two 
shocks, and k = 2 the region to the right of the reflected shock (cf. figure 1).  
Thus p ,  denotes that constant pressure which we find for the gas at  equilibrium 
without relaxation between the two shocks. All other quantities with subscript 
1 or 2 are defined in the same way. 

The set of relaxation equations in the zero-order approximation is 

D,F = L*(pk,s,, $l, $2, ..., c m ) ,  i = 1,2,  ..., n, k = 1,2, (11) 

where the operator D, is defined by 

D, = U, apx + v, a/*. 

We assume that we can solve this set of equations. Let the solution of (1 1) be 

G(x,y) in region 1, 

y) in region 2. 

In  the case of the relaxation equation 

the solution (12) can be given explicitly: 

[I = Tl + (To - Yl) exp [ - (x + KY ) lM ,  

with A, = (u, + KZ),)T, and A, = u ~ T , .  The distances A, and A, have quite a simple 
geometrical meaning: they are the width of the relaxation region in x direction 
behind the incident or reflected shock respectively. 

In  the last step, we shall now calculate the flow field in the first-order approxi- 
mation. In  this approximation the solution must be of the form 

u = u~+€Au,  v = vkf€AV, p = pk+€Ap, 

and so on. From this, using the balance equations, the equation of state and the 
thermodynamic relation zD = l/p, we obtain in the first-order approximation 
a set of five linear equations for the five functions A%, Av, Ap, Ap and As. 

11-2 
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Eliminating Au, Av, Ap  and A s ,  we can reduce this system to a differential 
equation of second order for the pressure perturbation : 

and 

(16) 

uk, as defined in (a), is the velocity of sound in the gas at equilibrium in region k. 
The function r (defined in (16)) depends on x and y. It can be calculated from the 
zero-order solution for the F.  The term Dir on the right-hand side of (14) repre- 
sents a source term, giving the production of waves through relaxation. It 
vanishes in equilibrium. For our model gas, r is of the simple form 

We consider only cases in which the flow is supersonic in region 2. In  this case, 
(14) is hyperbolic in regions 1 and 2. The eolution of (14) in region 1 can be com- 
puted easily. Because the flow is supersonic, the field can not be influenced by the 
presence of the reflected shock. All quantities in region 1 therefore depend only 
on the distance from the incident shock. This being so, the flow field can be 
computed even in the general case without the approximations made here. In  
our approximation the result is 

In  order to obtain this result, one has to make use of the relation 

P d U ,  + Kv1) = POUO. 
This relation simply states that the mass flux across the incident shock must 
be preserved. 

The problem of determining the field in region 2 is much harder. Since the state 
of the gas to the left of the reflected shock is not constant near the wall, the 
reflected shock is curved and the state in region 2 does not depend only on the 
distance from the shock. Firs+, we can find a general solution of (14) which 
satisfies the boundary condition (symmetry condition) aAp/ay = 0 at the solid 
wall, i.e. at  y = 0. This solution is 

(17) 
aq5lax is a particular integral of the inhomogeneous differential equation for 
Ap/p2 and satisfies the boundary condition a2$/axi3y = 0 at  the wall. q5 is given 
by the following equations : 

p ~ 1 ~ p  = a$/ax + f ( ~  + by) +f(x - by), b2 = (~~/q- I .  
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In  (19) the integrand r,, is the second derivative of ~ ( x ,  y) with respect to x for 
fixed y ;  this integrand r,, is to be considered as a function of x+by and x - b y  
and to be integrated over x + b y  and x - by. For y -+ 00, a$/ax tends to the pressure 
variation in the relaxation zone of the reflected shock far away from the wall. 
Thus, f has to vanish for y + co. 

As an example let us consider our model gas, and let us further assume that the 
relaxation equation is of the form DE = - (c- T)/7@, s). Then we obtain for P 
the simple result 

with 

I 

P =  [ A,exp ( -- y5) +A,] exp (- T), 

From this, using (18), we can calculate the function q5 for the model gas without 
difficulty. After this short remark on the model gas, let us return to the general 
case again. 

Using the balance of the y component of momentum and the condition that 
Av must vanish far downstream, we obtain the following result for the vertical 
component of the velocity: 

-Av 1 = - &t ( i % + f ( x + b y ) - f ( x - b y ) ) .  
% P2"B b ay 

Considering (19) and (20), we see that A p  and Av are known if the function f is 
determined. We shall now calculate f by making use of the conditions which are 
to be satisfied at  the reflected frozen shock. The form of the reflected shock will 
not differ much from the straight line x = ~ ' y ,  which represents the reflected 
shock in the zero-order approximation. In  our first-order approximation we may 
assume it to be given by x = K'Y + s&(y), where Q is still unknown. At the reflected 
shock we must satisfy jump conditions for the components of momentum and 
for the fluxes of mass and energy. Using further the equation of state and the 
relation ah/ap = l / p ,  we obtain in the first-order approximation five linear 
equations for the six functions Au, Av, Ap, Ap, As and Q to be satisfied at the 
reflected shock of the zero-order solution. Now, Ap and Av are known if only f is 
known. Thus we have to determine five unknown functions. If As and Q are 
eliminated, which may easily be done, the following set of equations remains: 

f ([K' + a1 Y) 
B-l[ A$: I+[;] f([K'-bIY) = [;;I. (21) 

The pi, wi and the matrix 8-1 are given by: 
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with T ( p ,  s) = ak@, s ) / h  and p-l(p, s) = &/ap, 

1 I - P 3  - P21P1 - P2lPl p=p, ,  s=sa 

Pl 2 P 2 W P 2  - (1 - PD11232) 

B - l =  pz -L2- P U28T(P, 4 1 
T2 aP 

Obviously, the w j  are functions of y, whereas the Pi and the matrix B-l are con- 
stant. The first of equations (21) is a linear relation between f([d +b]y) and 
f([K’ - bl Y) : 

f“’+bIY) +Bf([K‘--lY) = “+bIYh (22) 

with = BllPl + B 1 2 P 2  + B13/3)  

0 = Biiw, +Biz ~2 + B13~3. 

In  the solution for Ap, f describes waves reflected to and fro between the wall and 
the frozen shock. The constant B is nothing but the reflexion coefficient, as 
defined both by Lighthill (1949) and Chu (1952) for the reflexion of small ampli- 
tude waves from a shock. IBI is always smaller than one. The function w is a 
measure of the deviation of the jump conditions from the asymptotic jump 
conditions. It vanishes for y-f 00. The general solution for f can easily be given 
in the form of an infinite series which converges for IBI < I :  

Here, in principle, the pressure field for the general case (where the only essential 
restriction is that the equation of state must be of the form of (8) with e < 1) has 
been calculated. 

5. Results for the model gas and discussion 
In this section we shall discuss results for the model gas, i.e. for the perfect gas 

with one internal degree of freedom and with constant specific heats which 
furthermore obeys the relaxation equation D[ = - (6- T ) / T ( ~ ,  8). One may 
question whether this is useful since in real gases with vibrational relaxation the 
vibrational specific heat is a function of temperature while the equation of state 
of our model gas (9) leads to constant specific heats. We give here some reasons 
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FIGURE 2. Explanation of the behaviour of the wall pressure for 7 4 713. 
The subscript e stands for ‘equilibrium’ andf for ‘frozen’. 

which justify the choice of this particular model gas. First, the main aim of this 
paper was to develop a formalism which allows the analytical treatment of shock 
reflexion for the general case, in which the only essential assumption is that the 
equation of state is given by (8) with 8 < 1. The model gas is only used to illustrate 
some of the steps which, in principle, can be done in the general case as well but 
for which one needs a definite equation of state in order to get explicit results. To 
this end it seems best to use a model gas which leads to simple results. The perfect 
gas with constant specific heats seems to be very well suited for this purpose. 
Second, there are physical situations in which the specific heat of the internal 
degree of freedom is in fact nearly constant. This is especially the case for a gas 
with vibrational relaxation if the temperature is sufficiently high. Let us assume 
that the incident shock in such a gas is very strong. Then the gas behind the 
incident shock in region 1 is already very hot; in region 2 it is even hotter. This 
being so, the specific heat of the internal degree of freedom is nearly the same in 
both relaxation zones, while the relaxation times, depending strongly on 
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FIGURE 3. Wall pressure perturbation as a function of z for various values of the ratio of 
relaxation times r2/r1. (a) K = 1-3. (b)  K = 2. (c) Asymptotic case K + a). Note that one 
obtains different curves for different values of 
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temperature even at high temperatures, may differ very much. Therefore the use 
of our model gas seems to be justified if the incident shock is very strong. Finally, 
we give one more reason why the model gas seems to be quite suitable for the 
discussion of the shock reflexion problem. In papers by Buggisch (1969, 1970; see 
also Becker 1972) it has been shown that in one-dimensional unsteady shock 
reflexion the behaviour of the pressure behind the reflected shock is qualitatively 
the same as in real gases. (Results for CO, gas are given, for instance, in the paper 
of Johannesen et al. 1967.) Therefore it seems that the model gas already has 
properties which allow explanation of the complex behaviour of the gas flow 
behind the reflected shock (see also Becker & Bohme 1969, p. 108). 

In  order to get some insight into the behaviour of the gas flow let us first see 
what we should expect in the case 7(p2 ,  s2) 3 72 < 7(p1,  sl) = T ~ .  For this purpose 
we consider the process using three different length scales (see figure 2). On the 
first scale, both relaxation zones are infinitely thick. Then, the gas is completely 
frozen in both regions 1 and 2, the pressure in region 2 being p f f .  On the second 
scale, the relaxation zone behind the incident shock is still infinitely thick 
whereas the gas comes to equilibrium immediately behind the reflected shock. 
The pressure in region 2 is then pfe.  On the third scale, the gas is in equilibrium 
everywhere. In  this case the pressure in region 2 is pee. Now, for the model gas, 
in the cases considered, pfe  < p f f  < pea This being so, we must expect the pressure 
variation along the wall to behave qualitatively as in figure 2. Figures 3 (a), (b )  
and (c) show that, indeed, the wall pressure behaves as just predicted if 72 is 
sufficiently small compared with 71.  

To facilitate a comparison of the different cases presented in figures 3 (a), (6 )  
and (c), we have chosen as abscissa the co-ordinate 

instead of x. This choice allows us to consider also the limiting case K+OO 

(figure 3) on a finite scale. The reason for this is that the width A, in x direction 
of the relaxation zone in region 1 is a measure of the length over which Ap/p2 
varies. All figures show the reflexion of an infinitely strong shock. It makes sense 
to choose this particular case because the stronger the incident shock is, the 
better the assumption of relatively weak influence of relaxation and of constant 
specific heats is realized. The fact that the strength of the shock plays an 
important role for the applicability of the theory can be understood easily. If 
for fixed E the shock becomes weaker a,nd weaker, the changes in the flow field in 
the relaxation zone become more and more important in Comparison with the 
total changes (for extremely weak shocks we even get fully dispersed waves). It 
is therefore clear that for fixed E the analysis breaks down if the shock becomes 
too weak. On the other hand, if we keep the shock strength constant and let 
E tend to zero, we shall always arrive at small enough values of E to make our 
theory applicable. Now, in a real situation, 6 is a given quantity, and the best we 
can do is to choose the shock strength as large as possible. In all figures only cases 
with 72 < 71 are studied. The reason for this decision is that reaction rates usually 
increase with increasing temperature and density. The case 7,/r1 = 1 has been 
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FIGURE 4. Wall pressure perturbation as a function of time for the one-dimensional 
unsteady reflexion of an infinitely strong shock in our model gay with y = 4. 
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FIGURE 5. Variation of the pressure perturbation along straight lines y = constant parallel 
to  the wall y = 0 for an inclination of the incident shock K = 2 and for T2/71 = 0.12. 

included although this limit can not be reached inreal gases. But, since it is impos- 
sible to give an upper limit for r2/r1 which is lower than one, it seems justified to 
include this extreme case though it is unrealistic. In  all figures with the exception 
of figure 4 the value y = 1.5 has been chosen for the ratio of the specific heats. 

Figures 3 (a), (b) and ( c )  show the wall pressure as function of z for K = 1.3, 
K = 2 and K+ m and for various values of r2/r1. The choice K = 1.3 has been made 
because this value of K is close to the lowest value for which regular reflexion is 
possible. The case K = 2 represents a typical case which is not extraordinary in 
any respect. For T~ < T~ the wall pressure first decreases with increasing z. This 
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FIGURE 6. Same curves 8s in figure 5 with changed abscissae. The dashed l i e  indicates the 
position of the reflected equilibrium shock : x = K’Y. 

behaviour has been explained already. For r2 M T ~ ,  the wall pressure always 
increases for small z and even attains values larger than the asymptotic value. 
A similar behaviour can be observed in the one-dimensional time-dependent 
reflexion of a partly dispersed shock wave from a plane wall. To facilitate a 
comparison, figure 4, from Buggisch’s papers (see also Becker 1972), has been 
included. It shows the wall pressure history for the one-dimensional reflexion of 
an infinitely strong shock in our model gas with y = +. One more comment on 
figure 3 (c) should be made here. For r2/rl = 0, the pressure perturbation Ap/pz 
jumps a t  z = 0 from its frozen-frozen value to its frozen-equilibrium value, 
Tbis jump can be understood as limiting case of the behaviour shown by the 
curves of figures 3 (a)  and (b )  for T~ G rl .  Figure 3 (c) also shows that one gets 
different curves for K + co depending on how r2/r1 tends to zero at the same time. 
The last two figures, 5 and 6, have been included to give an impression of the entire 
pressure field. 



172 H .  Buggisch 

R E F E R E N C E S  

BAGANOFF, D. 1965 Experiments on the wall-pressure history in shock-reflexion processes. 

BECKER, E. 1972 Chemically reacting flows. Ann. Rev. Pluid Mech. 4, 155-193. 
BECKER, E. & BOHME, G. 1969 Gasdynamics, a Series of Monographs (ed. P. P. Wegener), 

vol. 1. Non-Eqzcilibrium Flows, part 1. Marcel Dekker. 
BUGGISCH, H. 1969 Andytische Untersuchungen zur Reflexion von VerdichtungsstijBen 

in relaxierenden Gasen. Dissertation D 17, Darmstadt. 
BUGGISCH, H. 1970 Analytische Untersuchung zur Reflexion teildispergierter Wellen in 

relaxierenden Gasen. 2. angew. Math. Mech. 50, 169-170. 
CHU, B. T. 1952 On weak interaction of strong shock and Mach waves generated down- 

stream of the shock. J .  Aero. Xci. 19, 433-446. 
JOHANNESEN, N. H., BIRD, G. A. & ZIENKIEWICZ, H. K. 1967 Theoretical and experi- 

mental investigation of the reflexion of normal shock waves with vibrational relaxa- 
tion. J .  Fluid Mech. 30, 51-65. 

J .  Fluid Mech. 23, 209-228. 

LIGHTHILL, M. J. 1949 The flow behind a stationary shock. Phil. Mag. 40, 214-220. 
OOKENDON, H. & SPENCE, D. A. 1969 Non-linear wave propagation in a relaxing gas. 

J .  Fluid Mech. 39, 329-346. 
SMITH, J. A. 1968 Experimentally determined structure of the shock reflection process in 

ionizing xenon. Phys. Fluids, 11, 2150-2161. 
SPENCE, D. A. 1961 Unsteady shock propagation in a relaxing gas. Proc. Roy. SOC. A 264, 

221. 




